Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(1): e2304835, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653619

RESUMEN

Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]-oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]-oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm-2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high-performance photoelectrodes toward efficient solar conversion.

2.
Adv Mater ; 35(18): e2300195, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36813539

RESUMEN

Although zinc-based batteries are promising candidates for eco-friendly and cost-effective energy storage devices, their performance is severely retarded by dendrite formation. As the simplest zinc compounds, zinc chalcogenides, and halides are individually applied as a Zn protection layer due to high zinc ion conductivity. However, the mixed-anion compounds are not studied, which constrains the Zn2+ diffusion in single-anion lattices to their own limits. A heteroanionic zinc ion conductor (Zny O1- x Fx ) coating layer is designed by in situ growth method with tunable F content and thickness. Strengthened by F aliovalent doping, the Zn2+ conductivity is enhanced within the wurtzite motif for rapid lattice Zn migration. Zny O1- x Fx also affords zincophilic sites for oriented superficial Zn plating to suppress dendrite growth. Therefore, Zny O1- x Fx -coated anode exhibits a low overpotential of 20.4 mV for 1000 h cycle life at a plating capacity of 1.0 mA h cm-2 during symmetrical cell test. The MnO2 //Zn full battery further proves high stability of 169.7 mA h g-1 for 1000 cycles. This work may enlighten the mixed-anion tuning for high-performance Zn-based energy storage devices.

3.
ACS Appl Mater Interfaces ; 14(50): 55700-55708, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36509714

RESUMEN

Lithium metal is the most promising anode for lithium batteries, but the growth of lithium dendrites leads to rapid attenuation of battery capacity and a series of safety problems during the plating/stripping process. Utilization of carbon materials for improving the Li metal anode stability represents a feasible strategy; particularly, the high affinity for lithium endows graphdiyne (GDY) with a promising capability for stabilizing Li metal anodes. Herein, vertically aligned GDY nanowalls (NWs) were uniformly grown on a copper foil, which allowed for dendrite-free, columnar deposition of lithium, desired for a stable Li metal anode. The highly lithiophilic GDY NWs afforded plentiful and evenly distributed active sites for Li nucleation as well as uniform distribution of Li-ion flux for Li growth, resulting in smooth, columnar Li deposition. The resultant Li metal electrode based on the Cu-GDY NWs was able to cycle stably for 500 cycles at 1 mA cm-2 and 2 mA h cm-2 with a high Coulombic efficiency of 99.2% maintained. A symmetric battery assembled by lithium-loaded Cu-GDY NWs (Cu-GDY NWs@Li) showed a long lifespan over 1000 h at 1 mA cm-2 and 1 mA h cm-2. Furthermore, a full cell assembled by Cu-GDY NWs@Li and LiFePO4 was able to cycle stably for 200 cycles at a high current of 5 C, indicating the potential applications in practical Li metal batteries at high rates. This work demonstrated great potential of GDY-based materials toward applications in Li metal batteries of high safety and high energy density.

4.
ACS Appl Mater Interfaces ; 14(48): 53808-53818, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36414242

RESUMEN

Formamidinium-cesium (FA-Cs) perovskites are an attractive candidate for perovskite solar cells (PSCs) with high stability, but they tend to suffer from high intrinsic defect density, especially at grain boundaries. Herein, a common heterocyclic conjugated molecule, orotic acid (ORO), was employed as a novel bifunctional additive to simultaneously achieve crystallization regulation and defect passivation of an FA-Cs perovskite toward efficient and stable PSCs. ORO was introduced to an FA-Cs perovskite precursor solution as an effective coordination-induced crystallization regulator to improve the grain size and crystallinity. Furthermore, under the assistance of π electrons, its carboxyl group bonded with undercoordinated Pb2+ defects at grain boundaries, and it was also able to form hydrogen bonds with undercoordinated I- defects, thus significantly reducing defect density. The average power conversion efficiency of the produced PSC devices with the ORO additive was promoted from 17.81% for the control PSCs to 19.32%, and a champion efficiency of 20.62% with negligible hysteresis was achieved. Additionally, the optimized devices exhibited high resistance to moisture incursion, leading to decent environmental stability. This work provides a convenient yet efficient approach to improve crystallization and passivate defects toward PSCs with enhanced efficiency and stability.

5.
Nanoscale ; 14(34): 12196-12218, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35968835

RESUMEN

Developing efficient, nanostructured electrocatalysts with the desired compositions and structures is of great significance for improving the efficiency of water splitting toward hydrogen production. In this regard, metal-organic framework (MOF) derived nanoarrays have attracted great attention as promising electrocatalysts because of their diverse compositions and adjustable structures. In this review, the recent progress in MOF-derived nanoarrays for electrochemical water splitting is summarized, highlighting the structural design of the MOF-derived nanoarrays and the electrocatalytic performance of the derived composite carbon materials, oxides, hydroxides, sulfides, and phosphides. In particular, the structure-performance relationships of the MOF-derived nanoarrays and the modulation strategies toward enhanced catalytic activity for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are discussed, providing insights into the development of advanced catalysts for the HER and OER. The challenges and prospects in this promising field for future industrial applications are also addressed.

6.
ACS Appl Mater Interfaces ; 14(33): 37833-37842, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35957577

RESUMEN

Photoelectrochemical (PEC) water splitting is a promising way to convert solar energy into hydrogen energy, but the efficiency is limited by severe charge recombination especially in photoanodes. Herein, to reduce the charge recombination in the bulk phase and at the surface of the BiVO4 photoanodes, oxygen vacancy introduction and cocatalyst loading were realized simultaneously by one-step photocathode deposition. A unique re-BiVO4/FeOOH photoanode was obtained by the photocathodic reduction of BiVO4 in an electrolyte containing Fe3+, where the oxygen vacancies were introduced during the reduction process and the deposition of the FeOOH cocatalyst on the surface was induced by the generated OH-. When used for PEC water oxidation, the obtained re-BiVO4/FeOOH photoanode achieved an excellent PEC performance with a photocurrent density of 5.35 mA/cm2 at 1.23 V versus RHE under AM 1.5G illumination, which was considerably higher than those for the pristine BiVO4 photoanode (2.88 mA/cm2) and the re-BiVO4 photoanode obtained by photocathodic reduction without Fe3+ (4.32 mA/cm2). After further modification with a cobalt silicate (Co-Sil) cocatalyst, the resultant re-BiVO4/FeOOH/Co-Sil photoanode exhibited a photocurrent density as high as 6.10 mA/cm2 at 1.23 V versus RHE and a remarkable applied bias photon-to-current efficiency of 2.25%. The outstanding performance of the re-BiVO4/FeOOH/Co-Sil photoanode could be attributed to the coexistence of plenty of oxygen vacancies in BiVO4 reducing recombination of photogenerated carriers, the FeOOH cocatalyst interlayer as a hole-transport layer, and the outer Co-Sil cocatalyst with a high activity toward oxygen evolution. This work may open a new avenue toward multifunctional modifications of photoanode systems for efficient solar conversion.

7.
Research (Wash D C) ; 2021: 9762095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34396136

RESUMEN

Programing the self-assembly of colloidal nanoparticles into predetermined superstructures represents an attractive strategy to realize functional assemblies and novel nanodevices, but it remains a challenge. Herein, gold nanoarrows (GNAs) showing a distinct convex-concave structure were employed as unique building blocks for programmable self-assembly involving multiple assembly modes. Regioselective adsorption of 1,10-decanedithiol on the vertexes, edges, and facets of GNAs allowed for programmable self-assembly of GNAs with five distinct assembly modes, and regioselective blocking with 1-dodecanethiol followed by adsorption of 1,10-decanedithiol gave rise to programmable self-assembly with six assembly modes including three novel wing-engaged modes. The assembly mode was essentially determined by regioselective adsorption of the dithiol linker dictated by the local curvature together with the shape complementarity of GNAs. This approach reveals how the geometric morphology of nanoparticles affects their regioselective functionalization and drives their self-assembly.

8.
ACS Appl Mater Interfaces ; 13(31): 37063-37070, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34318664

RESUMEN

Controlling and tuning surface properties of a catalyst have always been a prime challenge for efficient hydrogen production via water splitting. Here, we report a facile method for tuning both charger transfer and sorption-desorption properties of NiFe layered double hydroxide (LDH) by intercalating a conductive polymer of polypyrrole (ppy) via an interlayer confined polymerization synthesis (ICPS) process. Ex situ characterizations and in situ electrochemical quartz-crystal microbalance with dissipation (EQCM-D) tracking experiments showed that the intercalated ppy not only improved the charge transfer property of the resulting hybrid catalyst LDH-ppy but also made it more flexible and adaptive for quick and reversible sorption-desorption of reactants and intermediates during the oxygen evolution reaction (OER) process. Consequently, the as-prepared LDH-ppy exhibited a doubled catalytic current density over the bare LDH, as visualized by in situ scanning electrochemical microscopy (SECM) at the subnanometer scale. This work sheds light on orchestrating the charge and sorbate transfer abilities of catalysts for efficient water splitting by smartly combining inorganic and organic layers.

9.
Ecol Evol ; 11(3): 1446-1456, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598143

RESUMEN

Phytolith-occluded carbon (PhytOC) is an important long-term stable carbon fraction in grassland ecosystems and plays a promising role in global carbon sequestration. Determination of the PhytOC traits of different plants in major grassland types is crucial for precisely assessing their phytolith carbon sequestration potential. Precipitation is the predominant factor in controlling net primary productivity (NPP) and species composition of the semiarid steppe grasslands. We selected three representative steppe communities of the desert steppe, the dry typical steppe, and the wet typical steppe in Northern Grasslands of China along a precipitation gradient, to investigate their species composition, biomass production, and PhytOC content for quantifying its long-term carbon sequestration potential. Our results showed that (a) the phytolith and PhytOC contents in plants differed significantly among species, with dominant grass and sedge species having relatively high contents, and the contents are significantly higher in the below- than the aboveground parts. (b) The phytolith contents of plant communities were 16.68, 17.94, and 15.85 g/kg in the above- and 86.44, 58.73, and 76.94 g/kg in the belowground biomass of the desert steppe, the dry typical steppe, and the wet typical steppe, respectively; and the PhytOC contents were 0.68, 0.48, and 0.59 g/kg in the above- and 1.11, 0.72, and 1.02 g/kg in the belowground biomass of the three steppe types. (c) Climatic factors affected phytolith and PhytOC production fluxes of steppe communities mainly through altering plant production, whereas their effects on phytolith and PhytOC contents were relatively small. Our study provides more evidence on the importance of incorporating belowground PhytOC production for estimating phytolith carbon sequestration potential and suggests it crucial to quantify belowground PhytOC production taking into account of plant perenniality and PhytOC deposition over multiple years.

10.
Chemistry ; 26(69): 16228-16235, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32888220

RESUMEN

ß-Phase anhydrous guanine (ß-AG) crystals are one of the most widespread organic crystals to construct optical structures in organisms. Currently, no synthetic method is available that allows for producing guanine crystals with similar control in size, morphology, and crystallography as in biological ones. Herein, a facile one-step synthesis route to fabricate bio-inspired guanine microplatelets with (100) exposing planes in almost pure ß-phase is reported. The synthesis is based on a precipitation process of a guanine sodium hydroxide solution in formamide with poly(1-vinylpyrrolidone-co-vinyl acetate) as a morphological additive. Due to their uniform size (ca. 20 µm) and thickness (ca. 110 nm), the crystals represent the first synthetic guanine microplatelets that exhibit strong structural coloration and pearlescent lusters. Moreover, this synthesis route was utilized as a model system to investigate the effects of guanine analogues, including uric acid, hypoxanthine, xanthine, adenine, and guanosine, during the crystallization process. Our results indicate that the introduction of guanine analogues not only can reduce the required synthesis temperature but also provide a versatile control in crystal morphology and polymorph selection between the α-phase AG (α-AG) and ß-AG. Turbidity experiments show that the ß-AG microplatelets are formed with a fast precipitation rate in comparison to α-AG, suggesting that the formation of ß-AG crystals follows a kinetically driven process.

11.
J Am Chem Soc ; 142(27): 11669-11673, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543864

RESUMEN

We use liquid-phase transmission electron microscopy (TEM) to study self-assembly dynamics of charged gold nanoarrows (GNAs), which reveal an unexpected "colloid-atom duality". On one hand, they assemble following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for colloids when van der Waals attraction overruns slightly screened electrostatic repulsion. Due to concaveness in shape, GNAs adopt zipper motifs with lateral offset in their assembly matching with our modeling of inter-GNA interaction, which form into unconventional structures resembling degenerate crystals. On the other hand, further screening of electrostatic repulsion leads to merging of clusters assembled from GNAs, reminiscent of the coalescence growth mode in atomic crystals driven by minimization of surface energy, as we measure from the surface fluctuation of clusters. Liquid-phase TEM captures the initial formation of highly curved necks bridging the two clusters. Analysis of the real-time evolution of neck width illustrates the first-time observation of coalescence in colloidal assemblies facilitated by rapid surface diffusion of GNAs. We attribute the duality to the confluence of factors (e.g., nanoscale colloidal interaction, diffusional dynamics) that we access by liquid-phase TEM, taking turns to dominate at different conditions, which is potentially generic to the nanoscale. The atom aspect, in particular, can inspire utilization of atomic crystal synthesis strategies to encode structure and dynamics in nanoscale assembly.

12.
Angew Chem Int Ed Engl ; 59(39): 17219-17224, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32495389

RESUMEN

The development of transition-metal-oxides (TMOs)-based bifunctional catalysts toward efficient overall water splitting through delicate control of composition and structure is a challenging task. Herein, the rational design and controllable fabrication of unique heterostructured inter-doped ruthenium-cobalt oxide [(Ru-Co)Ox ] hollow nanosheet arrays on carbon cloth is reported. Benefiting from the desirable compositional and structural advantages of more exposed active sites, optimized electronic structure, and interfacial synergy effect, the (Ru-Co)Ox nanoarrays exhibited outstanding performance as a bifunctional catalyst. Particularly, the catalyst showed a remarkable hydrogen evolution reaction (HER) activity with an overpotential of 44.1 mV at 10 mA cm-2 and a small Tafel slope of 23.5 mV dec-1 , as well as an excellent oxygen evolution reaction (OER) activity with an overpotential of 171.2 mV at 10 mA cm-2 . As a result, a very low cell voltage of 1.488 V was needed at 10 mA cm-2 for alkaline overall water splitting.

13.
Nanomaterials (Basel) ; 9(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717277

RESUMEN

A seed-mediated electroless deposition (SMED) approach for fabrication of large-area and uniform gold nanoparticle films as efficient and reproducible as surface-enhanced Raman scattering (SERS) substrates was presented. This approach involved a seeding pretreatment procedure and a subsequent growth step. The former referred to activation of polylysine-coated glass slides in gold seed solution, and the latter required a careful control of the reactant concentration and reaction time. With the aid of gold seeds and appropriate reaction conditions, a large-area and uniform nanofilm with evenly distributed gold nanoparticles (Au NPs) was formed on the surface of the substrates after adding a mixed solution containing ascorbic acid and trisodium citrate. The morphology of the Au nanofilm was examined by scanning electron microscopy. The size evolution of Au NPs on the surface of the substrates was analyzed in detail. The nanofilm substrate was prepared by reaction conditions of the seeded activation process: 10 mL ascorbic acid and trisodium citrate mixture and 30 min of soaking time, which exhibited an excellent uniformity and reproducibility of SERS enhancement with relative standard deviation (RSD) values of less than 8% (particularly, a RSD value of 3% can be reached for the optimized measurement). Compared to the common electroless deposition, the seed-mediated electroless deposition possessed inherent advantages in controllability, reproducibility, and economic benefit.

14.
ACS Appl Mater Interfaces ; 10(45): 38985-38993, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30339348

RESUMEN

One of the key aspects contributing to the rapid development of perovskite solar cells is to prepare high-quality perovskite films via morphology control and interface engineering. Here, we demonstrate that the additive HPbI3 works effectively on both morphology control and grain boundary passivation of CH3NH3PbI3- xCl x thin films. By inducing HPbI3 to the crystal transformation process, high-quality perovskite films consisting of micro-sized grains with boundaries passivated by PbI2 can be readily produced. The perovskite film obtained with HPbI3 as the additive achieves a much longer carrier lifetime compared to the pristine perovskite film without the additive. Under the optimal HPbI3 amount (5.0%), the average power conversion efficiency of the planar-heterojunction solar cells is increased by ∼24% to 17.42% from 14.09% for the device without the additive, and the champion efficiency reaches 18.59%. The devices without any encapsulation show impressive shelf stability, retaining more than 85% of the initial efficiency after being stored in ambient environment for over 40 days.

15.
Small ; : e1801352, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30027578

RESUMEN

An efficient photoanode based on CdS nanorod@SnO2 nanobowl (CdS NR@SnO2 NB) arrays is designed and fabricated by the preparation of SnO2 nanobowl arrays via nanosphere lithography followed by hydrothermal growth of CdS nanorods on the inner surface of the SnO2 nanobowls. A photoelectrochemical (PEC) device constructed by using this hierarchical CdS NR@SnO2 NB photoanode presents significantly enhanced performance with a photocurrent density of 3.8 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE) under AM1.5G solar light irradiation, which is about 2.5 times higher than that of CdS nanorod arrays. After coating with a thin layer of SiO2 , the photostability of the CdS NR@SnO2 NB arrays is greatly enhanced, resulting in a stable photoanode with a photocurrent density of 3.0 mA cm-2 retained at 1.23 V versus the RHE. The much improved performance of the CdS NR@SnO2 NB arrays toward PEC hydrogen generation can be ascribed to enlarged surface area arising from the hierarchical nanostructures, improved light harvesting owing to the NR@NB architecture containing multiple scattering centers, and enhanced charge separation/collection efficiency due to the favorable CdS-SnO2 heterojunction.

16.
Sci Adv ; 3(10): e1701183, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29098180

RESUMEN

Self-assembly of colloidal nanocrystals into complex superstructures offers notable opportunities to create functional devices and artificial materials with unusual properties. Anisotropic nanoparticles with nonspherical shapes, such as rods, plates, polyhedra, and multipods, enable the formation of a diverse range of ordered superlattices. However, the structural complexity and tunability of nanocrystal superlattices are restricted by the limited geometries of the anisotropic nanoparticles available for supercrystal self-assembly. We show that uniform gold nanoarrows (GNAs) consisting of two pyramidal heads connected by a four-wing shaft are readily synthesized through controlled overgrowth of gold nanorods. The distinct concave geometry endows the GNAs with unique packing and interlocking ability and allows for the shape-directed assembly of sophisticated two-dimensional (2D) and 3D supercrystals with unprecedented architectures. Net-like 2D supercrystals are assembled through the face-to-face contact of the GNAs lying on the pyramidal edges, whereas zipper-like and weave-like 2D supercrystals are constructed by the interlocked GNAs lying on the pyramidal {111} facets. Furthermore, multilayer packing of net-like and weave-like 2D assemblies of GNAs leads to non-close-packed 3D supercrystals with varied packing efficiencies and pore structures. Electromagnetic simulation of the diverse nanoarrow supercrystals exhibits exotic patterns of nanoscale electromagnetic field confinement. This study may open new avenues toward tunable self-assembly of nanoparticle superstructures with increased complexity and unusual functionality and may advance the design of novel plasmonic metamaterials for nanophotonics and reconfigurable architectured materials.

17.
ACS Appl Mater Interfaces ; 9(11): 9620-9629, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28248075

RESUMEN

The rational design and controllable fabrication of electrode materials with tailored structures and superior performance is highly desirable for the next-generation lithium ion batteries (LIBs). In this work, a novel three-dimensional (3D) graphite foam (GF)@SnO2 nanorod arrays (NRAs)@polyaniline (PANI) hybrid architecture was constructed via solvothermal growth followed by electrochemical deposition. Aligned SnO2 NRAs were uniformly grown on the surface of GF, and a PANI shell with a thickness of ∼40 nm was coated on individual SnO2 nanorods, forming a SnO2@PANI core-shell structure. Benefiting from the synergetic effect of 3D GF with large surface area and high conductivity, SnO2 NRAs offering direct pathways for electrons and lithium ions, and the conductive PANI shell that accommodates the large volume variation of SnO2, the binder-free, integrated GF@SnO2 NRAs@PANI electrode for LIBs exhibited high capacity, excellent rate capability, and good electrochemical stability. A high discharge capacity of 540 mAh g-1 (calculated by the total mass of the electrode) was achieved after 50 cycles at a current density of 500 mA g-1. Moreover, the electrode demonstrated superior rate performance with a discharge capacity of 414 mAh g-1 at a high rate of 3 A g-1.

18.
Nanotechnology ; 28(14): 145101, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28281469

RESUMEN

Long wavelength light-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have attracted much attention in the last few years. In this paper, a red light (660 nm)-responsive drug delivery system based on low-cost cyclodextrin (CD)-gated MSNs containing a photodynamic therapy (PDT) photosensitizer (Chlorin e6, Ce6) was developed for the first time. The drug release experiment in water demonstrated that with the irradiation of red light, Ce6 can be excited to generate singlet oxygen, which can further cleave the singlet oxygen sensitive linker to trigger the departure of CD and the release of cargo. Further in vitro release experiments confirmed that cargo can be released from MSNs with the irradiation of red light and spread into the entire cell. The relative low power density (0.5 W cm-2) of excitation light together with the short irradiation time (one-three min) result in a low light dose (30-90 J cm-2) for the drug delivery, contributing to their potential clinical applications.


Asunto(s)
Ciclodextrinas/química , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silicio/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Células HeLa , Humanos , Luz , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química
19.
Sci Bull (Beijing) ; 62(18): 1231-1232, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659448
20.
Sci Total Environ ; 577: 413-417, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27817925

RESUMEN

Phytolith-occluded organic carbon (phytOC) has recently been demonstrated to be an important terrestrial carbon (C) fraction resistant to decomposition and thus has potential for long-term C sequestration. Existing studies show that plant leaves and sheath normally have high phytOC concentration, thus most of phytOC studies are limited to the aboveground plant parts. Grassland communities comprise herbaceous species, especially grasses and sedges which have relatively high concentrations of phytoliths, but the phytOC production from grassland, especially from its belowground part, is unknown. Here we determined the phytOC concentration in different parts of major plant species in a typical steppe grassland on the Mongolian Plateau, and estimated the phytolith C sequestration potential. We found that the phytOC concentration of major steppe species was significantly (p<0.05) higher in belowground (0.67gkg-1) than aboveground biomass (0.20gkg-1) and that the belowground net primary productivity (BNPP) was 8-15 times the aboveground net primary productivity (ANPP). Consequently, the phytOC stock in belowground biomass (12.50kgha-1) was about 40 times of that in aboveground biomass (0.31kgha-1), and phytOC production flux from BNPP (8.1-15.8kgha-1yr-1) was 25-51 times of that from ANPP. Our results indicate that BNPP plays a dominant role in the biogeochemical silica cycle and associated phytOC production in grassland ecosystems, and suggests that potential phytolith C sequestration of grasslands may be at least one order of magnitude greater than the previous estimation based on ANPP only. Our results emphasize the need for more research on phytolith and phytOC distribution and flux in both above and below ground plant parts for quantifying the phytolith C sequestration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...